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It is common for researchers discovering a significant interaction of a
measured variable X with a manipulated variable Z to examine simple
effects of Z at different levels of X. These “spotlight” tests are often
misunderstood even in the simplest cases, and it appears that consumer
researchers are unsure how to extend them to more complex designs.
The authors explain the general principles of spotlight tests, show that
they rely on familiar regression techniques, and provide a tutorial
demonstrating how to apply these tests across an array of experimental
designs. Rather than following the common practice of reporting spotlight
tests at one standard deviation above and below the mean of X, it is
recommended that when X has focal values, researchers should report
spotlight tests at those focal values. When X does not have focal values,
it is recommended that researchers report ranges of significance using a
version of Johnson and Neyman'’s test the authors term a “floodlight.”

Keywords: moderated regression, spotlight analysis, simple effects tests

Spotlights, Floodlights, and the Magic
Number Zero: Simple Effects Tests in
Moderated Regression

Most marketing and consumer behavior articles reporting
experiments test for interactions between two or more
variables. Authors may follow up an interaction of two
variables with “simple effects” tests (called “conditional
effects” tests by econometricians) of the effect of one
variable at different levels of another. They may follow up
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an interaction of three variables with tests of “simple inter-
actions” of two variables at a level of a third variable or
“simple—simple” effects of one variable at chosen levels of
the other two (Keppel and Wickens 2004).

This article presents a tutorial on the analysis of simple
effects tests in designs in which one or more of the interact-
ing variables are continuous and quantitative rather than
categorical. Researchers primarily trained in using analysis
of variance (ANOVA) frameworks for experimental designs
often struggle when following up interactions in which a
continuous variable interacts with one or more categorical
variables and the appropriate analysis takes place in the
framework of a moderated regression. In a review of Vol-
ume 48 of Journal of Marketing Research and Volume 38
of Journal of Consumer Research, we found that the
reported moderated regression analyses were often “cor-
rect” but not optimally performed and, in many other cases,
were simply incorrect. We observe similar small and large
errors in other social sciences. In this article, we identify the
most common misunderstandings and provide a simple
framework for conducting these analyses.

Consider a fictional extension of McFerran et al.’s (2010)
study of the effect of social influence on consumption. The
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authors propose that people’s own consumption behavior is
anchored on the quantity taken by others in their environ-
ment, but they adjust their consumption on the basis of
whether others around them belong to an aspirational or dis-
sociative group. That is, the authors propose an interaction
between quantity taken by others and type of others on the
amount of consumption. They find an interaction such that
consumers modeled the behavior of a thin confederate more
than they modeled the behavior of an obese confederate.
Consumers took more candy when the confederate took 30
pieces than when she took 2 pieces, but this difference
(which might reflect imitation of the model’s behavior) was
stronger when the model was thin than when she was obese.

Suppose that rather than manipulating the weight of the
confederate over two levels, McFerran et al. (2010) had a
yoked design in which pairs of undergraduate students par-
ticipated in the study, and one was cast in the role of con-
federate and instructed to take 2 or 30 candies, testing the
effect on the behavior of the other participant in the pair.
Over 100 pairs, suppose they measured the body mass index
(BMI) of the 100 confederate models.

How could the authors analyze the interaction and simple
effects? They could choose to perform a median split and
divide the undergraduate students into groups with large and
small confederate models (or small, medium, and large to
allow for nonlinearity). This is not a viable solution, because
the problems with median splits are well documented: there
is a substantial loss of statistical power from dichotomizing
a single predictor variable (e.g., Irwin and McClelland
2001, 2003; Jaccard et al. 2006; MacCallum et al. 2002),
and dichotomizing in multiple predictor models creates spu-
rious effects (Maxwell and Delaney 1993; Vargha et al.
1996). Instead, the authors should use moderated multiple
regression and test the model

(1 Y =a+bZ + cX + dZX,

where Y is number of candies the participant takes, X is the
BMI of the model, and Z is an indicator variable for number
of candies the confederate model takes. That indicator
variable could be dummy coded (0 = 2 candies, 1 =30 can-
dies), or it could be contrast coded (-1 = 2 candies, +1 = 30
candies).

A significant coefficient d in Equation 1 implies that BMI
moderates the effect of number of candies taken or, equiva-
lently, that the number of candies taken moderates the effect
of BMI. Following detection of a significant interaction, the
authors may want to estimate and test the simple effect of
the manipulated variable Z at different levels of X, the BMI
of the model. Tests of simple effects of a manipulated or
categorical variable at a level of a continuous variable are
often called “spotlight” tests: they shine the spotlight on the
effect of the manipulated Z at a particular value of X. Spot-
light analysis is a technique using basic statistics from
regression analysis to analyze the simple effect of one
variable at a particular level of another variable, continuous
or categorical. The purpose of this article is to help authors
conduct spotlight analyses in various types of experimental
and correlational designs and convey their findings more
effectively. We show the following:

1. Regression terms that authors sometimes interpret as “main
effects” are actually simple effects of an interacting variable
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in a product term (ZX) when other variables in that product
(interaction) term are coded as 0.

2. Researchers can shine the spotlight for the simple effect of Z
on a particular value of X by adding or subtracting a constant
from the original X variable to make the focal value the zero
point on the recoded scale.

3. Authors in marketing and allied social sciences have been
following a convention of testing simple effects of Z at plus
and minus one standard deviation from the mean of X. This
one standard deviation from the mean spotlight level is arbi-
trary and hinders generalization across studies.

4. If there are values of X that are particularly meaningful or
relevant for theoretical or substantive reasons, simple effects
spotlight tests should be reported at those values rather than
at plus and minus one standard deviation from the mean
value of X.

5.1If there are no values of X that are particularly meaningful —
in other words, if all values of X are relevant and interesting
values for considering simple effects of the manipulated Z—
authors should abandon spotlight tests and report what we
call a “floodlight” test of simple effects of Z at all possible
values of X. This floodlight test from Johnson and Neyman
(1936) identifies regions along the X continuum where the
simple effect of Z is significant and regions where it is not. It
is simple to compute those regions.

6. These same principles can be applied to more complex
designs about which marketing and consumer researchers
have been treading with trepidation. One can readily apply
these principles to multiple levels of Z, to within-participant
manipulations of Z, and to higher-order factorial designs
including one or more measured variables. The principles
involve nothing more than basic regression techniques. We
discuss certain statistical subtleties in the Appendix and
explain the applications to more complex designs in Web
Appendix A (www.marketingpower.com/jmr_webappendix).
Table 1 covers the contents of Web Appendix A.

SIMPLE EFFECTS TESTS AND THE MAGIC NUMBER
ZERO

Spotlight analysis provides an estimate and statistical test
of the simple effect of one variable at specified values of
another continuous variable. Aiken and West (1991), Irwin
and McClelland (2001), and Jaccard, Turrisi, and Wan
(1990) discuss how to conduct spotlight analyses. We reiter-
ate the key points here to aid understanding of the general
principles underlying spotlight analyses (we explain spe-
cific examples subsequently) and how this relates to our
proposed floodlight analysis.

Table 1
INDEX OF WHERE TO FIND BUILDING-BLOCK DESIGNS FOR
SPOTLIGHT AND FLOODLIGHT ANALYSES

Case Number Design Covered
0 (base case) 2 X continuous Main text p. 279 and Table 2,
Web Appendix A Table W1

1 2 (within) X continuous ~ Main text p. 285, Web

Appendix A p. 1 and Table W2

2 2 X 2 X continuous Main text p. 286, Web
Appendix A p. 2 and Table W3
3 3 X continuous Web Appendix A p. 4 and

Table W5
Continuous x continuous Web Appendix A p. 6
Quadratic Web Appendix A p. 7
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Take the basic moderated multiple regression model in
Panel A of Table 2 for the hypothetical version of McFerran
et al. (2010) we described previously. We analyze the
dependent variable (Y) as a function of a two-level manipu-
lated variable (Z), a continuous measured variable (X), and
their interaction. We code Z as 0 for the group in which the
model takes 2 candies and as 1 for the group in which the
model takes 30 candies. The model is given by Equation 1.

In Figure 1, Panel A, we plot hypothetical data for such a
model, with the continuous variable (X) plotted on the x-
axis and two regression lines relating X to the dependent
variable Y: one regression line for the Z = 0 group in which
the model takes 2 candies and one for the Z = 1 group in
which the model takes 30 candies. We discuss the specific
estimates in the next section.

Some authors use the continuous value of X when testing
the interaction in Equation 1 (i.e., for “analysis” of the inter-
action). However, when performing simple effects tests to
“explicate” the interaction, they revert to using median
splits, testing the simple effect of Z at different levels of the
now-dichotomized X. This is incorrect. The correct test of
simple effects of Z at different levels of X uses the continu-
ous X and spotlight tests.

The simple effect of Z at a given value of X is equivalent
to the distance between the regression line for the treatment
group and the regression line for the control group. We find
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the regression line for the group in which the model takes
30 candies, where Z = 1, by replacing Z with 1:

(la) Y=a+b+cX+dX=(a+b)+(c+d)X.

The intercept, where X = 0, is given by (a + b), and the
slope is given by (c + d). We found the regression line for
the group in which the model takes 2 candies, where Z =0,
by replacing Z with 0:

(1b) Y =a+cX.

The intercept, where X = 0, is given by a, and the slope is
given by c. Therefore, the simple effect of the manipulation,
Z, given by the difference between the lines,! is

(1) AY =b + dX.

Equation 1 and Equation 1c¢ make clear that b is the sim-
ple effect of Z when X =0, even though X = 0 may well be
outside the range of the data or an impossible value. Equa-
tion 1 simplifies to Y = a + bZ where X = 0. Equation lc,
which estimates the simple effect as the difference between
two regression lines, simplifies to AY = b where X =0.

Zero is a “magic number” in moderated regression. It is
“magic” because Equation 1 simplifies when either variable
has a value of zero. A constant can be added to or subtracted

IMore generally, the simple effect of Z on Y is given by the derivative of
Y with respect to Z.

Table 2
SIMPLE EFFECTS IN A 2 x CONTINUOUS DESIGN

A. Baseline Analysis

Manipulation

Measured Variable Manipulation X Measured

Intercept V4 X zX
Coding 0 = control Raw scale
1 = treatment
Coefficient a b c d
Interpretation Estimate of Y when Z =0 Simple effect of treatment vs.  Simple slope of measured Change in effect of treatment
and X =0 (i.e., for control control when X =0 variable on Y when Z =0 vs. control when measured
group when X = 0) (i.e., for control group) variable increases by one unit
B. Test the Simple Effect of Treatment Versus Control at Focal Value X = Xg,.; by Recoding X so That It Drops Out of the Equation
Z X’ zX’
Coding 0 = control X' =X — Xgocal
1 = treatment
Coefficient a’ b’ I d
Equivalent to a+ cXpocal b + dXpocal c d

Estimate of Y when Z =0
and X" =0 (i.e., for control
group when X = Xg. 1)

Interpretation

Simple effect of treatment vs.
control when X" =0 (ie.,
when X = Xgocal)

Simple slope of measured
variable on Y when Z =0
(i.e., for control group)

Change in effect of treatment
vs. control when measured
variable increases by one unit

C. Test the Simple Slope of X in Treatment Group by Recoding Z so That It Drops Out of the Equation

z” X 77X
Coding 1 = control Raw scale
0 = treatment
Coefficient a” b” c” d”
Equivalent to a+b -b c+d —d
Interpretation Estimate of Y when Z” =0 Simple effect of control Simple slope of measured Difference in slope of

and X =0 (i.e., for treatment
group when X =0)

vs. treatment when X =0

measured variable between
control (Z” = 1) and
treatment (Z” = 0)

variable on Y when Z” =0
(i.e., for treatment group)

Notes: Y =a + bZ + cX + dZX.
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Figure 1
GRAPHICAL INTERPRETATION OF REGRESSION
PARAMETERS FROM TABLE 3

A: Model Parameters for Raw Data
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Notes: The dashed lines represent the smaller quantity group where Z =
0; the solid lines represent the larger quantity group where Z = 1. Panel A
shows the regression results using the untransformed data. The coefficient
on quantity, b, reflects the effect of quantity for a BMI of 0, an impossible
value that lies well outside the range of the data. Panel B shows the regres-
sion results using the transformed data, recoded such that the definition of
borderline overweight (a BMI of 25) lies at 0. Everything about the graph
is exactly the same, other than the recoded x-axis. The statistical test still is
a test at 0, but now 0 corresponds to a substantively meaningful value.

from a moderating variable to make the coefficients on the
other variables reflect simple effects of those variables at
particular values of the moderator.

Simple Effect of Categorical Variable Z at a Given Level of
Continuous Variable X

Understanding that the coefficient b reflects the simple
effect of Z when X = 0 and that the coefficient c reflects the
simple effect of X when Z =0, we can recode X to examine
the effect and statistical significance of Z at some value Xgq.q
other than the original X = 0. Simply subtract Xg,, from X to
create a new variable (X’ = X — Xp,..1). Rerun the regression
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using X’ instead of X. The estimate, standard error, and
significance test of b’ (the new coefficient on Z) are equiva-
lent to those of b + dX at the focal value because when X =
XFocal» X =0 (see Table 2, Panel B).

Simple Slope of Continuous Variable X at a Given Level of
Categorical Variable Z

We can use the same “magic number zero” principles if
we want to know the simple effect of the quantitative
variable X at a given level of the manipulated Z. We can use
the same principle to examine the estimate, standard error,
and significance test of the slope of either line. Because the
line for the group in which the model takes 2 candies, where
Z =0, is given by Equation 1b, the estimate, standard error,
and significance test of c represent the estimate, standard
error, and significance test of the slope of X for that group.
To test the slope of X for the group in which the model takes
30 candies, recode Z such that Z = 0 for the group in which
the model takes 30 candies and Z = 1 for the 2-candy group
(see Table 2, Panel C).

Note that this is only the case when Z is dummy coded
(i.e., one group is coded as 0 and the other group is coded as
1). If Z is contrast coded such that one group is coded as —1
and the other is coded as 1, the magic number zero principle
still holds such that the coefficient on X still represents the
relationship between X and Y when Z = 0, but this no longer
represents the simple slope for either group. Instead, if Z is
contrast coded, the coefficient on X represents the
unweighted average of the two simple slopes (a “main
effect” in ANOVA terms). The simple slope for the group
represented by Z = —1 is given by (c — d), and the simple
slope for the group represented by Z = 1 is given by (c + d).

These two examples, testing both the difference between
two regression lines and the slope of a single line by recod-
ing interacting variables, are examples of a broader princi-
ple: In linear models with interaction terms, the estimate,
standard error, and significance test of a coefficient on a
variable represent the estimate, standard error, and signifi-
cance test of the simple effect of that variable when all
variables it interacts with are equal to 0. As Irwin and
McClelland (2001) note, many scholars incorrectly interpret
these parameters as main effects rather than as simple
effects. This mistake persists in recent marketing research.

Because coefficients b and ¢ in Equation 1 are inter-
pretable as simple effects when interacting variables are set
equal to 0, strategic recoding enables a researcher to exam-
ine effect sizes and significance tests at other values of
interest.2 This is not limited to the familiar 2 X continuous
design. We describe other cases subsequently in this article
and in Web Appendix A (www.marketingpower.com/jmr_
webappendix). In the next section, we illustrate this point
and emphasize the role of focal values in the simple case of
two interacting variables in a 2 X continuous design.

SPOTLIGHT ANALYSIS AT MEANINGFUL FOCAL
VALUES

We begin illustrating spotlight analysis in a simple com-
mon design. We have two purposes in discussing this

2Rather than recoding X’ and redoing the regression analysis for a given
Xrocal» We can directly estimate the coefficient b and its standard error
using components of the variance—covariance matrix.
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design. First, we establish the basic paradigm used in all
extensions of the magic number zero in more complex
designs. Second, we emphasize the suboptimal nature of the
spotlight tests that marketing researchers most often report
for these designs, in which they examine simple effects of a
manipulated variable at plus and minus one standard devia-
tion from the mean of a measured variable.

For this and subsequent examples, we generated fictitious
illustrative data (N = 100) to showcase various analysis
methods and results; we generated all of these data to be
consistent with plausible predictions made from McFerran
et al.’s (2010) results discussed previously, but we collected
no real data for these examples.3 Again, the dependent
variable (Y) is the number of candies the participant takes.
The dichotomous independent variable (Z) is the number of
candies the confederate takes (2 candies, coded as 0, vs. 30
candies, coded as 1). The continuous variable (X) is the con-
federate’s BMI (M =21.97, SD =2.90). We are interested in
the effect on quantity taken by the nonconfederate partici-
pant. We estimate the parameters of the moderated regres-
sion model given by Equation 1; these appear in Table 3,
Panel A, and Figure 1, Panel A.

The regression results using the untransformed data are
not readily interpretable. The significant value of the coeffi-
cient d tells us that the interaction is significant. That is, the
two experimental groups have different slopes relating BMI
of the confederate to number of candies the participant
takes. In the 2-candy condition in which Z = 0, the slope is
c. In the 30-candy condition in which Z = 1, the slope is ¢ + d.
However, because of the magic number zero, a (the intercept)
and b (the coefficient for Z) pertain only to when BMI =0,
an impossible value.

Given that we find a significant interaction, at what val-
ues of X should we test for simple effects of Z? The conven-
tion is to test at one standard deviation above and below the
mean, though we argue that these arbitrary values are not
very informative and researchers should instead test at
meaningful focal values. There are commonly agreed cut-
offs for BMI between underweight and normal weight, nor-

3The data sets for the 2 X continuous and 3 x continuous examples
are available in the Web Appendix (www.marketingpower.com/jmr_
webappendix) so readers may replicate the analyses reported here or do
any further examination of these illustrative, hypothetical data.
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mal weight and overweight, and overweight and obese.
These cutoffs represent meaningful values, and we argue
that readers should be more interested in knowing the effect
of Z at these focal meaningful values that are not sample
dependent than they should be in tests at plus and minus one
standard deviation from the sample mean for an idiosyncratic
sample. Furthermore, effect sizes for sample-dependent val-
ues of X are less likely to generalize than those for mean-
ingful focal values that are the same across studies.

Consequently, we might want to know the effect of Z
when X = 25, the cutoff between being normal weight and
being overweight; we could equally apply these procedures
to any of the other focal cutoffs. To observe the effect of
choice of large versus small quantity for a borderline over-
weight confederate, we would simply define a new variable
X’ =X -25. We want to set the X value of interest equal to
0: this is the key. We set X" = X — 25 and reran the resulting
model:

2) Y=a +bZ+ X +dZX.

Table 3, Panel B, shows the parameter estimates and tests
for an analysis of this model using X" = BMI — 25 instead of
X = BMI. It is important to note that 25 is subtracted from
raw, not mean-centered, BMI.

Figure 1, Panel B, depicts the parameters for the model in
Table 3, Panel B. In the figure, a value of X = 25 corre-
sponds to X" = 0. Note that the underlying models in Figure
1, Panels A and B, are identical. In particular, the slopes for
the two groups are unchanged by the transformation of X,
and the estimates and tests are unchanged for the coefficient
¢ = ¢/, the slope for the group that observed the confederate
take the smaller quantity. Furthermore, there is no change in
the interaction coefficient d = d’, the difference between the
slopes in the two conditions. However, now the coefficient
b’ (# b) estimates the difference between the two groups
when X = 25 (i.e., the effect of the number of candies the
observed confederate takes, estimated for confederates with
BMI = 25, the lower bound of the overweight range). In this
case, there is a significant difference between the two
groups when X’ =0 or equivalently, when X = 25. The inter-
cept a” also changes because it now reflects the forecasted
value when X’ =0 (i.e., X =25) and Z = 0; that is, the model
predicts that participants who observe a borderline over-

Table 3
REGRESSION RESULTS OF FICTITIOUS ILLUSTRATIVE DATA

A. Results in Raw Metric (X = BMI)

Variable Coefficient Estimate Standard Error t p

Intercept a 3.65 3.93 93 356
Coded number of candies taken by confederate b 18.56 5.54 3.35 001
Confederate BMI c .19 17 1.10 273
Coded number of candies taken by confederate X confederate BMI d -57 25 -2.27 026

B. Results After Transformation (X’ = BMI — 25) to Examine the Simple Effect for People with a BMI of 25

Variable Coefficient Estimate Standard Error t p

Intercept a’ 8.44 68 12.39 <.001
Coded number of candies taken by confederate b’ 4.39 1.05 4.18 <.001
Confederate BMI — 25 ¢’ 19 17 1.10 273
Coded number of candies taken by confederate X (confederate BMI — 25) d’ =57 25 -2.27 026
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weight model (BMI = 25) take 2 candies will themselves
take approximately 8.4 candies. In summary, when the
model includes all terms, adding or subtracting a constant to
a variable X leaves the underlying model unchanged and
only changes the coefficients for the intercept and other
variables with which that variable is multiplied. It does not
affect the coefficient on terms that include that variable,
contrary to what many first expect when learning spotlight
tests.

This example illustrates two major points. First, by
recoding variables in a moderated regression to change
what is coded as zero, we can derive simple effect spotlight
tests for the effect of a variable in the model in which other
variables are set to zero. Second, there are many cases in
which authors should break from the convention of con-
ducting spotlight tests at plus and minus one standard devi-
ation from the mean. Indeed, we would argue that this con-
vention is almost never the best approach, notwithstanding
that we have both used and advocated the approach in pre-
vious studies.

There are three main problems of testing at plus and
minus one standard deviation. First, if the distribution of the
moderator X is skewed, one of those values can be outside
the range of the data. Second, if the moderator X is on a
coarse scale, it may be impossible to have a value of X
exactly equal to plus or minus one standard deviation.
Third, if two researchers replicate the same study with sam-
ples of very different mean levels of the moderator, they
appear to fail to replicate one another even when they find
exactly the same regression equation in raw score units. The
tendency of authors to fail to report the mean and standard
deviation of X only exacerbates this problem. Fernbach et
al. (2012) face these potential problems using Frederick’s
(2005) cognitive reflection test, a coarse scale (four points
ranging from O to 3) that can take on skewed distributions
that vary substantially across populations. For example, one
standard deviation above the mean of Frederick’s Massa-
chusetts Institute of Technology (MIT) sample (M = 2.18,
SD = .94) would be an impossibly high value, one standard
deviation below the mean of his University of Toledo sam-
ple M = .57, SD = .87) would be an impossibly low value,
and a “low” MIT score would be similar to a “high” Univer-
sity of Toledo score. Fernbach et al. (2012) successfully han-
dle these problems by not using sample-dependent and
potentially impossible values of “high” and “low” but rather
by testing at the scale endpoints. We expand on these prob-
lems and provide further details in Web Appendix B (www.
marketingpower.com/jmr_webappendix).

In cases in which there are meaningful focal values, we
recommend a spotlight test focusing on simple effects of the
manipulated variable at judiciously chosen values of the
moderator rather than at an arbitrary number of standard
deviations from the mean. In other cases, no particular value
of the moderating variable is particularly focal. In those
cases, we recommend reporting a floodlight analysis of the
simple effect of the manipulated variable across the entire
range of the moderator, reporting regions where that simple
effect is significant. This approach is appropriate when the
scale of measurement is “arbitrary” —that is, when it is an
interval scale of some underlying construct with an
unknown zero point.
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FLOODLIGHT ANALYSES: SPOTLIGHT ANALYSES FOR
ALL VALUES OF X

The Johnson—Neyman Point

Spotlight analysis provides a test of the significance of one
coefficient at a specific value of another continuous variable,
so it is most useful when there is some meaningful value to
test. When it is not the case that some values are more mean-
ingful than others or when the researcher anticipates that
readers might be interested in other spotlight values, we rec-
ommend using an analysis introduced by Johnson and Ney-
man (1936) that we dub “floodlight” analysis. Whereas the
spotlight illuminates one particular value of X to test, the
floodlight illuminates the entire range of X to show where
the simple effect is significant and where it is not; the border
between these regions is known as the Johnson—-Neyman
point. In essence, this test reveals the results of a spotlight
analysis for every value of the continuous variable. As
Preacher, Curran, and Bauer (2006) note, this eliminates the
arbitrariness of choosing high and low values such as one
standard deviation above and below the mean.

Johnson and Neyman (1936) introduce the concept and
statistical underpinnings of floodlight analysis. Rogosa
(1980, 1981), and Preacher et al. (2006) contribute impor-
tant later developments. It is not necessary to delve into the
underlying mathematics to understand the basic concept.
The Johnson—Neyman point (or points: there are always two
such points that could either straddle a crossover or both be
on the same side; see McClelland and Lynch 2012) is the
value of X at which a spotlight test would reveal a p-value
of exactly .05 (or whichever alpha one is using). In the case
of a 2 X continuous interaction, it is the value of X for which
the simple effect of Z is just statistically significant. Values
of X on one side of the Johnson—Neyman point yield sig-
nificant differences between the two groups, whereas values
on the other side do not. In this way, a floodlight shines on
the range of values of the continuous predictor X for which
the group differences are statistically significant.

Mohr, Lichtenstein, and Janiszewski (2012) provide a
recent example of such an analysis and presentation. In their
research, they were interested in the effect of the interaction
of dietary concern (assessed as a continuous measure aver-
aging items rated on “arbitrary” seven-point scales, yield-
ing, at most, an interval scale of the underlying construct)
and health frame on guilt and purchase intention. Because
they assess the continuous moderator on an arbitrary scale
without focal values, they present the results showing the
range over which the simple effect is significant rather than
picking sample-dependent points without real meaning to
the reader.

Conducting a Floodlight Analysis in the 2 X Continuous
Case

Floodlight analysis remained obscure for years because
of its apparent computational complexity. Now macros for
SPSS, SAS, and R (Hayes 2012; Hayes and Matthes 2009;
Preacher et al. 2006)# make computing Johnson—Neyman
points feasible for any researcher. Rather than testing a par-

4The macros and instructions for using them are available at
http://afhayes.com/spss-sas-and-mplus-macros-and-code.html and http://
quantpsy.org/interact/index.html.



Spotlights, Floodlights, and the Magic Number Zero

ticular value of X as in spotlight analysis, these macros
solve for values of X for which the t-value is exactly equal
to the critical value —in other words, values for which a
spotlight analysis would give significant results on one side
and nonsignificant results on the other side. Rather than
spotlighting a single point, this floodlights the entire range
of the data to reveal where differences are and are not sig-
nificant rather than focusing on one or two arbitrary points.
As Potthoff (1964) and Hayes and Matthes (2009) note,
these regions do not adjust to account for multiple compari-
sons across the entire range. However, they do enable
researchers to claim that any spotlight test within that range
would be significant.

Researchers preferring not to download and learn new
macros can readily perform a floodlight analysis by per-
forming a spotlight analysis for a grid of interesting values,
being sure to include the minimum and maximum plausible
values of the continuous predictor. Often, there is only a dis-
crete set of interesting or plausible values (e.g., points on a
seven-point rating scale). For example, Nickerson et al.
(2003) provide the spotlight values of the coefficient for a
list of income ranges that were of interest. If finer precision
is desired, it is easy to observe between which grid values
the spotlight switches from being significant to nonsignifi-
cant; the Johnson—Neyman value must lie within that inter-
val. Iterative spotlight analyses using numbers between
those two grid values will quickly determine a fairly exact
Johnson—Neyman value. Importantly, this iterative process
generalizes to more complex designs for which macros
often do not exist. The general strategy is to do spotlight
analyses on a grid of values for one or more variables and
note the regions in which the spotlight values switches from
significant to insignificant. Then iterate between those val-
ues if more precision is desired.

As an illustration of performing floodlight analysis by an
iteration of selected spotlight values, Table 4 displays the
difference between the two example groups in number of
candies taken (i.e., the vertical distance between the two
regression lines in Figure 1) for spotlighted values of BMI
between 16 and 32 in steps of 2, along with the associated
statistical information for the coefficient describing the dif-
ference at each spotlighted value of BMI. We constructed
the table by performing nine spotlight regressions. For

Table 4
SPOTLIGHT ANALYSES OF THE DIFFERENCE BETWEEN
GROUPS IN NUMBER OF CANDIES TAKEN FOR A
SYSTEMATIC SELECTION OF BMI VALUES BETWEEN THE
MINIMUM AND MAXIMUM

Group Lower Upper
Difference 95% 95%
(Candies  Confidence Confidence

BMI Taken) Interval Interval 1(96) p

16 949 6.20 12.78 5.73 <.0001
18 8.36 592 10.79 6.82 <.0001
20 7.22 549 8.95 8.28 <.0001
22 6.09 4.65 7.52 8.43 <.0001
24 495 3.20 6.71 5.60 <.0001
26 3.82 135 6.29 3.07 003
28 2.69 —.64 601 1.60 A1
30 1.55 -2.69 5.80 72 A7
32 42 -4.77 5.61 .16 87
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example, we obtained the values in the first row by comput-
ing a new variable X’ = X — 16 and then estimating the
regression model (Equation 2):

Y=a"+bZ+c'X +dZX.

The tabled values are the statistical values for the coefficient
b’

Note in Table 4 that the difference between groups in
number of candies taken switches from being significantly
greater than zero for BMI = 26 to not being significantly
greater than zero for BMI = 28. Thus, the Johnson—-Neyman
point must be between BMI = 26 and BMI = 28. Further
iteration within the range between 26 and 28 (not presented
here) locates the Johnson—Neyman point more precisely at
BMI =27 4. Figure 2, Panel A, displays the regression lines
for both model groups with the filled region (the floodlight)
indicating for which values of BMI a spotlight analysis
would reveal a significant difference in the number of can-
dies taken between groups. That is, there is a significant dif-
ference between groups for values of BMI between 16 and
27.4 and not a significant difference for BMI values above
27.4. Figure 2, Panel B, graphs the simple effect of the
manipulation as it varies across X, showing that the Johnson—
Neyman point is located where the 95% confidence band
around the simple effect intersects the x-axis.

To report a floodlight analysis, report the Johnson—Neyman
point and range(s) of significance, or if using the grid search
method, report the range(s) of significance and intervals
tested. When graphing the results, show the Johnson—-Neyman
point or grid points tested and report range(s) of significance.
For example,

Regressing candies taken on the manipulation (2 can-
dies = 0, 30 candies = 1), BMI (M =21.97, SD =2.90,
min = 16.5, max = 29.0), and their interaction revealed a
significant interaction (t(96) =-2.27, p < .05). To decom-
pose this interaction, we used the Johnson—Neyman
technique to identify the range(s) of BMI for which the
simple effect of the manipulation was significant. This
analysis revealed that there was a significant positive
effect of candies taken by the model on candies taken
by the participant for any model BMI less than 27.4
(Bjy =3.03, SE = 1.54, p = .05), but not for any model
BMI greater than 27 4.

EXAMPLES OF WHEN TO USE SPOTLIGHT AND
WHEN TO USE FLOODLIGHT

Sometimes spotlight analysis is more appropriate and
sometimes floodlight analysis is more informative. We lay
out the relevant considerations here. First, is the scale mean-
ingful with a known correspondence to the underlying con-
struct, or is it arbitrary with an unknown linear mapping
from numbers on the scale to levels of the underlying con-
struct? Second, do readers understand certain focal values
to have meaningful referents even if not all values have
meaningful referents? Third, are some values of the variable
impossible due to coarseness of the scale? For a simple
decision tree to determine whether to use spotlight or flood-
light, see Figure 3.

Blanton and Jaccard (2006) decry misuse of “arbitrary
metrics” in psychology, wherein researchers interpret val-
ues of some interval scale as “low” or “high.” A scale is
“arbitrary” when the parameters of the function linking a
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Figure 2
CORRESPONDENCE BETWEEN THE JOHNSON-NEYMAN
POINT AND THE CONFIDENCE BANDS AROUND THE SIMPLE
EFFECT OF Z

A: Regression Lines with Johnson—-Neyman Point
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B: Estimated Simple Effect of Z with Confidence Bands

27.4

Difference Between Groups (b’)
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BMI

Notes: Panel A shows a floodlight of the region of BMI values (filled
area below 27.4) for which a spotlight test would reveal significant differ-
ences between the two model groups. Panel B shows a graph of the esti-
mated simple effect (the distance between the two regression lines in Panel
A) with confidence bands. Confidence bands are narrowest at mean BMI
(M =21.97). The Johnson—Neyman point in Panel A aligns with the inter-
section of the confidence band and the x-axis in Panel B. The crossover
point in Panel A aligns with the intersection of the estimated simple effect
and the x-axis in Panel B.

person’s true score on a latent construct to observed scores
is unknown or not transparent. Blanton and Jaccard are par-
ticularly critical of the use of scores from the Implicit Asso-
ciation Test. These scores are based on reaction times,
which as a measure of time have ratio scale properties.
However, when researchers interpret the reaction time (or
difference of reaction times) as a measure of latent preju-
dice, it becomes an arbitrary scale, and values of zero are no
longer particularly meaningful. (Difference scores com-
puted from interval scale ratings of two objects can be
meaningful values if zero truly represents no difference in
perceptions/ratings of the objects. For an example, see
Spiller 2011, Appendix Study 4.)
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Most individual difference variables used in marketing
and consumer research are arbitrary in that they are interval
scales of the underlying constructs with unknown units and
origins: propensity to plan, involvement, need for cognition,
tightwad—spendthrift, need for uniqueness, and so on. We
argue that floodlight tests are likely to be more appropriate
than spotlight tests at chosen values of these scales.

When values are clearly nonarbitrary and focal values are
meaningful, spotlight analysis can be particularly illuminat-
ing. Consider Study 1 from Leclerc and Little (1997), cited
by Irwin and McClelland (2001) as an early example of
clever rescaling of X to generate a meaningful spotlight test
to examine the effect of advertising for people who were
maximally brand loyal. The authors examine how the effect
of advertising content type (ad type: picture vs. information)
on brand attitude varied as a function of brand loyalty.

The authors operationalized brand loyalty as a function
of the number of brands purchased in the product category
the previous year: fewer brands indicate greater loyalty. Had
they simply used the raw number of brands, the coefficient
on advertising content type would have represented the
effect of advertising content type for people who purchased
zero brands the previous year. This would have been prob-
lematic for two reasons. First, they excluded from analysis
nonusers who did not purchase any brands the previous
year, so this point was outside the range of the data. Second,
this was not a substantively meaningful value to test: the
theory made predictions regarding brand loyalty, not brand
usage.

However, because the theory made predictions for people
who were brand loyal, it was meaningful to test the simple
effect for people who purchased a single brand the previous
year (i.e., those who were completely brand loyal). Thus,
Leclerc and Little (1997) created a new variable, switching,
calculated as number of brands purchased minus one. The
authors regressed brand attitude on ad type, switching, and
ad type X switching. They could therefore interpret the sim-
ple effect of advertising content type as the simple effect
when switching was equal to zero—in other words, the sim-
ple effect for brand loyalists. Transforming one variable
such that zero took on a substantively meaningful value pro-
vided the reader with information about an easily inter-
pretable simple effect. Spotlight was particularly useful in
this case; moreover, because loyalty can take on only inte-
ger values, it would be better to present spotlights at any
integer values likely to be of interest to readers rather than
arbitrary and impossible values one standard deviation
above and below the mean.

The same point applies to our previous hypothetical
extension of McFerran et al. (2010). Had relative weight
been measured using a subjective seven-point scale rather
than BMI, we would advocate using a floodlight analysis to
consider ranges of significance rather than meaningless val-
ues one standard deviation above and below the mean.

Interval scales can become nonarbitrary when researchers
develop norms for where a particular score in the distribu-
tion lies across some reasonably representative sample in a
population of consumers. Churchill (1979) advocates this
development of norms as the last step of scale development.
However, this norming step has not been a part of practice
in most marketing and consumer research on scale develop-
ment, including our own.
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Figure 3
FLOODLIGHT DECISION TREE
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interest.

entire range of X.

Notes: This decision tree helps researchers determine when to use spotlight analysis and when to use floodlight analysis to examine the simple effect of Z

across a moderating variable X in a model of the form Y =a + bZ + ¢X + dZX.

We argue that in cases such as the McFerran et al. (2010)
extension, it is more meaningful to report spotlight tests at
specific values of an interval or ratio scale—which facili-
tates comparisons across studies using the same scale with
samples drawn from different populations—than to bury the
metric of the original scale by reporting plus and minus
some sample-dependent standard deviation. This enables
accumulation of findings over time about the range of val-
ues of the scale in which the simple effect of some inde-
pendent variable is substantively and statistically signifi-
cant. Edwards and Berry (2010) argue that moving beyond
hypotheses that merely postulate the sign of some effect to
specifying the range of values where the effect holds can
increase theoretical precision.

MAGIC NUMBER ZERO FOR SPOTLIGHTS IN OTHER
COMMON DESIGNS

Thus far, we have discussed spotlight and floodlight
analyses in the simple 2 X continuous case. In this section,
we present a simple, easy-to-implement method for accom-
plishing spotlight analysis in other common designs. It
should be apparent that the iterative grid approach in Table
4 can derive floodlight tests in these designs as well.

From the literature, it is clear that when designs vary
from the standard 2 X continuous design, authors take a
variety of inappropriate strategies to analyze simple effects,
including median-splitting one or more continuous
variables, breaking down a higher-order interaction into
separate subsamples and running piecewise analyses on
each, and misinterpreting simple effects at one level of a
variable as main effects across all levels of a variable. The
following cases provide a better way of conducting such
analyses.

In the following subsections, we show how to extend these
principles to (1) the case of a 2 X continuous design when Z
is manipulated within participants and (2) the case of a2 X 2
x continuous design when all factors are between partici-
pants. Web Appendix A (www.marketingpower.com/jmr_
webappendix) extends these principles to two other cases,
the 3 X continuous design and the case in which X and Z are
both continuous. We also consider models with quadratic
terms. We emphasize that by no means are these the only
designs for which we can use spotlight. Instead, these are
representative examples of common designs, and the basic
principle we use in these designs (recognition of “the magic
number zero”) can be applied to every other design that uses
a linear model (including logistic regression) for analysis.
For each design, we build on the basic extension of McFer-
ran et al. (2010) described previously. Web Appendix A
gives analysis templates for Cases 1, 2, and 3 along with the
aforementioned extensions.

Case 1: 2 x Continuous When the Manipulation of Z Is
Within Subject

Imagine a version of our original example with two lev-
els of the manipulated factor Z (0 = confederate took 2 can-
dies, 1 = confederate took 30 candies) and a continuous
measure of X = BMI. This time, however, let Z be a
repeated measures factor. In this case, we simply create a
contrast score for each subject showing the effect of the
manipulation for that subject: Z st = Y30 — Y2 (see Judd,
McClelland, and Ryan 2009; Keppel and Wickens 2004);
we could similarly create contrast scores for within-subject
designs with more than two levels. We then analyze the
Zcontrast Scores as a function of X = BMI:

3) Zeonyrast =2t bX.
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To extend the principle of the magic number zero, the test
of the intercept a in this analysis is the predicted Z opirast
score when X = 0. The coefficient b now is equivalent to a
test of the interaction of X with Z in the original design. To
create a spotlight test of the effect of the repeated factor Z at
the borderline between normal and overweight, create X’ =
X — 25. Rerun the regression Zgqprast = 8 + b’X’. Now the
test of the intercept a’ is the effect of the repeated factor Z at
the new zero point associated with the chosen level of X.

Case 2: 2 x 2 X Continuous

Often, researchers may be interested in how a continuous
variable moderates a 2 X 2 interaction, resulting in a three-
way interaction. For example, in addition to manipulating
quantity taken, we might also manipulate the perceived
healthfulness of the item being considered (candy vs. gra-
nola, as in Study 1 of McFerran et al. 2010). The prediction
might be that attenuation of assimilation only occurs for
unhealthy food because participants are cued to be more
vigilant when food is unhealthy than when it is healthy.
(McFerran et al. find this not to be the case.) The model for
this design is as follows:

(4) Y=a+bZ+cW +dX +eZW + fZX + gWX + hZWX.

Here, Z and X are coded the same as they were in the
opening example, and W is coded O for candy and 1 for gra-
nola. If the parameter h testing the three-way interaction is
significant, it becomes relevant to test the simple interaction
of two of the variables at different levels of the third
variable. The coefficient e tests the simple ZW interaction
when X = 0. (It does not test the ZW interaction that would
be evident in plotting the ZW cell means, collapsing over
levels of X.) The coefficient f tests the simple ZX interaction
when W = 0. The coefficient g tests the simple WX inter-
action when Z = 0. To follow up a simple two-way inter-
action, we test the simple—simple effect of one of the
variables holding constant the other two. In this model, b
represents the simple—simple effect of Z when W =0 and X =
0, c represents the simple—simple effect of W when X =0
and Z =0, and d represents the simple—simple effect of X
when Z =0 and W =0.

Zero is a magic number in this analysis as well. We inter-
pret every coefficient as the effect of that variable (or inter-
action) when all variables with which that term interacts are
set to 0, causing them to drop out of the model.

Suppose that we obtained a significant three-way inter-
action ZWX and wanted to follow up with tests of the sim-
ple ZW interaction at meaningful levels of X. We would
recode X’ =X — 25 just as in each of the previous examples.
When X’ =0, the new coefficient on ZW, ¢’, represents the
simple interaction between quantity and type of snack taken
(granola vs. candy) when X’ = 0, which corresponds to a
BMI of 25. Spotlight analysis in a 2 X 2 X continuous design
requires application of the same principle we used in the
previous cases: recoding variables such that O represents the
value of a variable at which we are interested in the simple
effect of the other variables.

Web Appendix A (www.marketingpower.com/jmr_
webappendix) includes detailed explanations of how to do
simple effects tests in Cases 1 and 2. It also covers three
additional cases (Case 3: 3 X continuous; Case 4: continu-
ous X continuous; and Case 5: quadratic). It should be evi-
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dent for each of these cases that researchers can easily
accomplish floodlight analyses by iterating to redefine the
value of X when X’ =0 as in Table 4 within that particular
design. Of course, they can extend these analyses to other
designs not described here; for example, they could exam-
ine 2 X 3 X continuous by combining the strategies used in
the 3 X continuous and 2 X 2 X continuous cases.

CONCLUSION

Spotlight tests reflect the simple effect of a variable Z at
different levels of an interacting variable X. Aiken and West
(1991), Jaccard et al. (1990), and Irwin and McClelland
(2001) popularized these tests, but they remain misunder-
stood. We have shown that these tests rely on basic multiple
regression principles; by changing the coding of variables
to alter the zero point, tests of the parameters of a moder-
ated regression model can provide the simple effects tests of
interest.

Some researchers, reviewers, and editors seem wary or
uncertain of using these tests in anything but the simple case
of a dichotomous manipulated variable Z and a continuous
measured variable X. For that reason, they fall back on the
flawed practice of dichotomizing continuous variables
when faced with more complex designs, or they use the con-
tinuous variable to test the significance of the interaction
but dichotomize to graph the interaction or do simple effects
tests. We show how we can apply the general principle of
the magic number zero to derive ready tests of simple inter-
actions and simple—simple effects in an array of more com-
plex designs. When interacting variables are coded such that
zero represents focal values, those interacting variables drop
out of the model at their focal values. We then interpret the
remaining terms in the model as simple effects at those focal
values of interacting variables.

We criticize the common practice of reporting spotlight
tests of the simple effect of Z at plus and minus one stan-
dard deviation from the mean on an interacting variable X.
We argue that this is almost never optimal because those
tests and estimates are sample dependent in defining high
and low values of X, because it is possible that these esti-
mates refer to impossible values of X and because readers
are not inherently more interested in the effect of Z at plus
and minus one standard deviation than at values of X some-
what higher or lower. We argue that in some cases,
researchers overlook that there may be “focal” values that
are of particular interest, and we encourage use of these
more judiciously chosen levels of the continuous variable
for spotlight tests.

There are many cases in which researchers apply spot-
light analysis where no particular value of the continuous
variable is focal. In these cases, we recommend abandoning
the convention of testing spotlights at plus and minus one
standard deviation from the mean. Instead, we recommend
use of a related test that shows ranges of the continuous
variable where the simple effect of a second variable is sig-
nificant and where it is not. Johnson and Neyman (1936)
originally reported this technique. We dub this a floodlight
analysis, as it illuminates the entire range of the data rather
than spotlighting a single point. Reporting floodlight analy-
ses provides readers an efficient way to infer whether two
groups differ at any given point of interest and facilitates
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comparing and integrating findings across multiple samples
with different sample distributions.

APPENDIX: STATISTICAL AND POWER
CONSIDERATIONS IN SPOTLIGHT AND FLOODLIGHT
TESTS

In this Appendix, we summarize statistical parameter
estimation and power considerations in spotlight and flood-
light analysis in a design with a manipulated Z with two lev-
els (dummy coded O = control, 1 = treatment) and X coded
as a continuous variable in its raw metric:

(A1) Y =a+bZ+cX +dZX.

1. Power to detect the simple effect of Z varies with X. This is
true because both the numerator and the denominator of the
F test for the simple effect of Z change with X. A nonzero
interaction of X and Z implies that there is some value of X
where the regression lines for the two levels of Z cross over,
although this crossover may occur outside the range of data.
Johnson and Neyman (1936) prove that one can find two
values of X where the effect of Z is exactly significant.
McClelland and Lynch (2012) demonstrate that it is possible
to have real data in which the effect of Z is significant to the
right or left of the crossover point of the interaction, but not
significant as one moves further away from the crossover. To
guard against this, be sure to conduct a spotlight test at mini-
mum and maximum values of X.

2. In the main text, we discuss how two researchers replicating
the same experiment with a manipulated Z and a measured X
might find exactly the same regression equation but perceive
that they had failed to replicate one another’s findings if the
two studies used samples with high versus low average val-
ues of the measured variable X. Now consider that the
researchers analyzed the two exact replicates using spotlights
at the same focal value of the moderator, X, as expressed
in raw score units. The statistical tests on the simple effect of
the manipulated variable Z at Xg,, Will not match in the two
replicates, because the standard error of the coefficient is
smaller when the focal value X, is closer to the sample
mean (McClelland and Lynch 2012).

3.Some methodologically sophisticated colleagues have
expressed skepticism when told that the simple effect of a
manipulated variable Z is significant at a value of X two stan-
dard deviations from the mean. Their statistical intuition is
that the analysis relies on a small subset of cases far from the
mean. They are missing that the solution to the moderated
regression uses all of the data from the study. Like any
regression, the spotlight statistical tests of the simple effect
of Z at a given level of X reflect that there are wider confi-
dence intervals for the predicted value of Y when X is far
from the mean of the data than when it is close to the mean.

4. The use of spotlight tests at each value of an arbitrary but
coarse scale is different from treating each value as discrete
levels of a categorical factor in an ANOVA. In that latter case,
the power of the test of the simple effect of a manipulated
variable at a level of the moderator variable is affected only
by the number of cases at that level of the moderator variable.
In contrast, the spotlight test is a regression parameter esti-
mate that treats the moderator as a continuous variable. In
this case, the power of the spotlight test of the simple effect
of the manipulated factor is affected by the entire data set
including all possible values of the moderator. In this case,
there is no special danger of testing for extreme values of the
moderator that are inside the range of the data. Like any
regression, the spotlight statistical tests of the simple effect
of Z at a given level of X reflect that there are wider confi-
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dence intervals for the predicted value of Y when X is far
from the mean of the data than when it is close to the mean.

5. Even when the true interaction has a coefficient d exactly
equal to zero, merely including the interaction term also
causes the standard error of b to change with a rescaling of
X, because now b is explicitly testing the effect of Z at the
value of X coded as 0. For example, consider a model in
which X takes on values from 1 to 7 with a mean of 4 and Z
is dummy coded. Assume that the true interaction is zero, and
when one estimates Equation 1, the coefficient d on the inter-
action is exactly zero. The standard error on the coefficient b
is the standard error when X = 0, outside the range of the
data. One will get a smaller estimate of the standard error and
a larger t test on the parameter b if one mean centers X' = X —
4, so that now 0 is coded at the mean. The standard error of b,
the distance between the two lines, is smallest at the mean of
X; as one moves farther away from the mean of X, the stan-
dard error increases. Thus, even if the estimate of the inter-
action is exactly equal to O, the test of the simple effect of Z
will be less powerful if tested far from the mean than if tested
at the mean. This has practical implications because if X
ranges from 1 to 7 and the effects of Z, X, and ZX on Y are
modeled using Equation 1, even if the effects of X and ZX
are exactly O, the significance test of Z will be misleading or
at least misunderstood if X is analyzed in its raw metric. Note
that this effect of rescaling X on the estimate and standard
error of the effect of Z does not occur if no interaction term is
included in the model; that is, for a “main effects”—only
model Y = a + bZ + cX. In that model, neither coefficient b
nor ¢ changes, nor do the standard errors on b and ¢ change
when a constant is added or subtracted from Z or X, although
the estimate of a changes.
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