
Derivations
This file presents the derivatioins and graph construction to accompany
McClelland, G.H., Lynch, J.G, Jr., Irwin, J.R., Spiller, S.A., & Fitzsimons, G.J. (under review).  Median 
splits, Type II errors, and false positive consumer psychology: Don’t fight the power.  Journal of Con-
sumer Psychology.

An interactive Mathematica notebook is available from the first author at gary.mcclelland@colorado.edu 
who prepared this file.  1 March 2015

Standardized Partial Regression Coefficient, Split and Continuous

Definitions of standardized partial regression coefficients from Cohen, Cohen, Aiken, & West:

beta1[ry1_, ry2_, r12_] :=
ry1 -− ry2 r12

1 -− r122

beta2[ry1_, ry2_, r12_] :=
ry2 -− ry1 r12

1 -− r122

Splitting one continuous variable at its median reduces the correlation between two variables by a factor 

of a, with a depending on the distribution.  For the normal distribution a = 2
π𝜋

.

Splitting one predictor (i.e., independent variable) will reduce its correlation with the criterion (i.e., 
dependent variable)and with the other predictor by a.  So the estimated coefficients when the first 
predictor is split become:

beta1[a ry1, ry2, a r12]

a ry1 -− a r12 ry2

1 -− a2 r122

beta2[a ry1, ry2, a r12]

-−a2 r12 ry1 + ry2

1 -− a2 r122

The ratio of the split estimate to the continuous estimate for the first predictor is therefore:

beta1[a ry1, ry2, a r12] /∕ beta1[ry1, ry2, r12]

1 -− r122 (a ry1 -− a r12 ry2)

1 -− a2 r122 (ry1 -− r12 ry2)

Simplify[%]

a -−1 + r122

-−1 + a2 r122

Note that this ratio does not depend on the correlations between the predictors and the criterion but only 
on the intercorrelation between the two predictors.  Using the factor for the normal distribution, the ratio 
becomes



Note that this ratio does not depend on the correlations between the predictors and the criterion but only 
on the intercorrelation between the two predictors.  Using the factor for the normal distribution, the ratio 
becomes

a -−1 + r122

-−1 + a2 r122
/∕. a →

2

π

2
π

-−1 + r122

-−1 + 2 r122

π

Simplify[%]

-−
2 π -−1 + r122

π -− 2 r122

Increment in R2

The definition for R2 is provided by Cohen, Cohen, Aiken, & West.

rsq[ry1_, ry2_, r12_] := beta1[ry1, ry2, r12] ry1 + beta2[ry1, ry2, r12] ry2

rsq[ry1, ry2, r12]

ry2 (-−r12 ry1 + ry2)

1 -− r122
+
ry1 (ry1 -− r12 ry2)

1 -− r122

Simplify[%]

ry12 -− 2 r12 ry1 ry2 + ry22

1 -− r122

The increment in R2due to the first predictor equals the overall R2 minus the squared correlation 
between the other predictor and the criterion.  That is

sr1[ry1_, ry2_, r12_] := rsq[ry1, ry2, r12] -− ry2^2

sr1[ry1, ry2, r12]

-−ry22 +
ry2 (-−r12 ry1 + ry2)

1 -− r122
+
ry1 (ry1 -− r12 ry2)

1 -− r122

Simplify[%]

-−
(ry1 -− r12 ry2)2

-−1 + r122

The ratio of the increment in R2 is computed as

sr1[a ry1, ry2, a r12] /∕ sr1[ry1, ry2, r12]

-−ry22 +
ry2 -−a2 r12 ry1+ry2

1-−a2 r122
+ a ry1 (a ry1-−a r12 ry2)

1-−a2 r122

-−ry22 + ry2 (-−r12 ry1+ry2)

1-−r122
+ ry1 (ry1-−r12 ry2)

1-−r122
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Simplify[%]

a2 -−1 + r122

-−1 + a2 r122

Again, this ratio does not depend on the predictor correlations with the criterion or their parameter 
estimates but only on the predictor intercorrelation r12.  Using the factor for the normal distribution yields

Simplify
a2 -−1 + r122

-−1 + a2 r122
/∕. a →

2

π


2 -− 2 r122

π -− 2 r122
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Plot of the Two Ratios

ShowPlot-−
2 π -−1 + r122

π -− 2 r122
,
2 -− 2 r122

π -− 2 r122
, {r12, 0, .99}, PlotRange → {0, 1.01},

Frame → {True, True, False, False}, AspectRatio → 1, PlotStyle → Thickness[.0075],
FrameLabel → {"r12", "Ratio of Split and Continuous Estimates"},
BaseStyle → {FontSize → 16},

FrameTicks → {{0, .2, .4, .6, .8, 1}, {0, .2, .4, .6, .8, 1.}},

Graphics[{Dashing[{.02, .02}], Thickness[.0075], Line[{{0, 1}, {1, 1}}]}],
ListPlot[{{0, .797885}, {.3, 0.77}, {.5, 0.71168}}, PlotStyle → PointSize[.025]]
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Standardized Partial Regression Coefficient for the Unsplit Variable

As noted above, when neither predictor variable is split, the formula for the standardized partial regres-
sion coefficient for the second variable is:

beta2[ry1_, ry2_, r12_] :=
ry2 -− ry1 r12

1 -− r122

And the coefficient for the second predictor variable when the first predictor variable is split is given by
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beta2[a ry1, ry2, a r12]

-−a2 r12 ry1 + ry2

1 -− a2 r122

Consider the ratio of the two estimates when there is no correlation between the predictors

beta2[a ry1, ry2, a r12] /∕ beta2[ry1, ry2, r12] /∕. r12 → 0

1

Hence, when there is no correlation between the two predictors, splitting the other predictor variable has 
no expected effect on the estimate of the standardized partial regression coefficient for the second 
predictor.  The situation is more complex when the predictors are intercorrelated.  Depending on the 
relationship among the three correlations, the estimate of the partial regression coefficient for the 
second predictor might increase, decrease, or remain the same.  That is,

Reduce[beta2[a ry1, ry2, a r12] > beta2[ry1, ry2, r12] &&

0 < r12 < 1 && 0 < ry1 < 1 && 0 < ry2 ≤ 1 , {ry1, ry2, r12}] /∕. a →
2

π

0 < ry1 < 1 && (0 < ry2 ≤ ry1 && 0 < r12 < 1) || ry1 < ry2 ≤ 1 && 0 < r12 <
ry1

ry2

The restrictive condition predicting whether splitting the other predictor will increase or decrease the 
estimate of the parameter for the unsplit predictor is, respectively, whether r12is less than or greater 
than rY1

rY2
.  From re-running the SAS code provided by IPKSP and disaggregating the data according to 

the above rule, the means from the simulations are:

Increasing Conditions

When r12 < rY1

rY2
 there is an increase in the mean estimate (2nd column) of the standardized partial 

regression coefficient for the unsplit variable when the other variable is split, indexed by the predictor 
intercorrelation (1st column)

inc = {{0.0, 0.3193829 -− 0.3196263},
{0.1, 0.2959352 -− 0.2823697}, {0.3, 0.2179823 -− 0.1748656},
{0.5, 0.1375720 -− 0.0423314}, {0.7, 0.0496708 -− (-−0.1674093)}};

TableForm[inc]

0. -−0.0002434
0.1 0.0135655
0.3 0.0431167
0.5 0.0952406
0.7 0.21708

Decreasing Conditions

When r12 > rY1

rY2
 there is a decrease in the mean estimate (2nd column) of the standardized partial regres-

sion coefficient for the unsplit variable when the other variable is split, indexed by the predictor intercorre-
lation (1st column).  
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dec = {{0.0, 0.3193829 -− 0.3196263},
{0.1, 0.4059998 -− 0.4073575}, {0.3, 0.4907363 -− 0.5048938},
{0.5, 0.5353843 -− 0.5807554}, {0.7, 0.6257530 -− 0.7958947}};

TableForm[dec]

0. -−0.0002434
0.1 -−0.0013577
0.3 -−0.0141575
0.5 -−0.0453711
0.7 -−0.170142

Aggregate Means
When averaging across all conditions without considering whether there is an increase or decrease for 
the conditions, the following means (produced by the authors’ SAS code) are:

mean = {{0, 0}, {.1, 0.3013571 -− 0.2912314}, {.3, 0.2742505 -− 0.2454882},
{.5, 0.2580021 -− 0.2114925}, {.7, 0.2573454 -− 0.1878173}};

TableForm[
mean]

0 0
0.1 0.0101257
0.3 0.0287623
0.5 0.0465096
0.7 0.0695281

Note that the aggregate means are not the averages of the increase and decrease means because 
there were not an equal number of cases in each set.

No Split Means
For graphing purposes we include what the mean “change” would have been had there been no split of 
the other predictor variable

TableForm[cont = {{0, 0}, {.1, 0}, {.3, 0}, {.5, 0}, {.7, 0}}]

0 0
0.1 0
0.3 0
0.5 0
0.7 0
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Figure 2 Disaggregated

ShowListPlot[{inc, mean, cont, dec},

Joined → True, Frame → {True, True, False, False},
BaseStyle → {FontSize → 16}, PlotRange → {-−.2, .22},
PlotStyle → {{Black, Thickness[.0075]}, {Black, Thickness[.0075], Dashed},

{Black, Thickness[.0075], Dashing[{.1, .05}]}}, AspectRatio → 1,
Axes → False, FrameTicks → {{0, .1, .3, .5, .7}, {-−.2, -−.1, 0, .1, .2}},
FrameLabel → {"r12", "Change in β2"}],

GraphicsText"r12 <
rY1

rY2
", {.5, .17}, Text"r12 >

rY1

rY2
", {.5, -−.15}


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Special Case: rY1 = rY2
When the two predictors have the same correlation with the criterion, it is possible to compute the ratio 
of the estimate when the other predictor is split to the estimate when the other predictor is not split.
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beta2[a ry1, ry1, a r12] /∕ beta2[ry1, ry1, r12] /∕. a →
2

π

1 -− r122 ry1 -−
2 r12 ry1

π


1 -− 2 r122

π
 (ry1 -− r12 ry1)

Simplify
1 -− r122 ry1 -−

2 r12 ry1

π


1 -− 2 r122

π
 (ry1 -− r12 ry1)



(1 + r12) (-−π + 2 r12)

-−π + 2 r122

This ratio depends only on the predictor intercorrelation.  It is always greater than equal to 1 so when 
the predictor correlations with the criterion are approximately equal, the estimate of the coefficient for 
the second predictor when the first predictor is split is always enhanced relative to its value in the 
continuous analysis.  The following graph shows the increasing magnitude of the enhancement.

Plot
(1 + r12) (-−π + 2 r12)

-−π + 2 r122
, {r12, 0, 1}, PlotStyle → Thickness[.0075],

Frame → {True, True, False, False}, BaseStyle → {FontSize → 16}, AspectRatio → 1,
FrameTicks → {{0, .2, .4, .6, .8, 1}, {1, 1.2, 1.4, 1.6, 1.8, 2}},

FrameLabel → {"r12", "Enhancement of β2 when X1 Split"}

0 0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

1.8

2

r12

E
nh

an
ce

m
en

to
fβ𝛽

2
w

he
n

X
1

S
pl

it

Ratio of beta2/beta1 when X1 is split and when the correlations between each independent variable and 
the dependent variable are equal is defined by
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Ratio of beta2/beta1 when X1 is split and when the correlations between each independent variable and 
the dependent variable are equal is defined by

beta2[a ry1, ry1, a r12] /∕ beta1[a ry1, ry1, a r12] /∕. a →
2

π

ry1 -−
2 r12 ry1

π

2
π

ry1 -− 2
π

r12 ry1

Simplify[%]

-−
π -− 2 r12

2 π (-−1 + r12)

ShowPlot-−
π -− 2 r12

2 π (-−1 + r12)
, {r12, 0, .7}, PlotRange → {0, 2.5},

BaseStyle → {FontSize → 16}, Frame → {True, True, False, False},
FrameTicks → {{0, .1, .2, .3, .4, .5, .6, .7}, {0, .5, 1, 1.5, 2, 2.5}},
FrameLabel → {"r12", "Ratio of β2 to β1"},

AspectRatio → 1, PlotStyle → {Black, Thickness[.0075]},

Graphics[{Black, Thickness[.0075], Dashing[{0.02, 0.02}], Line[{{0, 1}, {1, 1}}]}]
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The specific values used in the paper
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-−
π -− 2 r12

2 π (-−1 + r12)
/∕. r12 → 0.

1.25331

-−
π -− 2 r12

2 π (-−1 + r12)
/∕. r12 → .3

1.4485

-−
π -− 2 r12

2 π (-−1 + r12)
/∕. r12 → .5

1.70874

-−
π -− 2 r12

2 π (-−1 + r12)
/∕. r12 → .7

2.31598

Special Case: rY1 ≠ rY2:  Split Estimate is Weighted Average of the Unsplit 
Estimates
When the predictor correlations with the criterion are unequal, the situation is more complicated.  

The following derivation shows that the estimate for the unsplit variable when the other variable is split 
becomes the weighted average between the orignal estimates.  In other words, splitting the first predic-
tor variable confounds the estimate of the second variable with that of the first variable.   

Solve[beta2[a ry1, ry2, a r12] ⩵

w beta1[ry1, ry2, r12] + (1 -− w) beta2[ry1, ry2, r12], w] /∕. a →
2

π

w →

-−r12 ry1+ry2

1-−r122
-−

-−
2 r12 ry1

π
+ry2

1-−
2 r122

π

-−r12 ry1+ry2

1-−r122
-−

ry1-−r12 ry2

1-−r122



Simplify[%]

w →
(-−2 + π) r12 (-−ry1 + r12 ry2)

(1 + r12) -−π + 2 r122 (ry1 -− ry2)


w[ry1_, ry2_, r12_] := Simplify
(-−2 + π) r12 (-−ry1 + r12 ry2)

(1 + r12) -−π + 2 r122 (ry1 -− ry2)


Example for paper

w[.5, .3, .3]

0.182355
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beta1[.5, .3, .3]

0.450549

beta2[.5, .3, .3]

0.164835

beta2[a .5, .3, a .3] /∕. a →
2

π

0.216937

w[.5, .3, .3] beta1[.5, .3, .3] + (1 -− w[.5, .3, .3]) beta2[.5, .3, .3]

0.216937

The rounded version used in the paper:

.18 (.45) + (1 -− .18) .165

0.2163

Distribution of the Correlation Coefficient

The probability density function of the correlation coefficient under the null hypothesis that r = 0 is given 
by

f[r_, n_] :=
1 -− r2

n-−4

2

Beta 1
2
, n-−2

2


Plot[{f[r, 50], f[r, 100], f[r, 200]}, {r, -−.5, .5},
Frame → {True, False, False, False}, Axes → False, BaseStyle → {FontSize → 16},
FrameTicks → {{-−.5, -−.25, 0, .25, .5}, None}, FrameLabel → {"r"}]
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Simulations
In the section of our paper “Median splits and false positive consumer psychology” we report this small 
simulation.

We first define a function for drawing a sample of size n from a bivariate normal distribution with correla-
tion r.

getData[r_, n_] :=
RandomVariate[MultinormalDistribution[{0, 0}, {{1, r}, {r, 1}}], n];

And specify a number of simulations.  Note that even with 10,000 simulations, the numbers reported 
below may not be reproduced exactly with new runs of these simulations.

nSims = 10 000;

This function, for nSims times, computes the squared correlations between the two sampled variables 
and then the two variables after the first is split at its median.  (Note: we split at the actual median, 
whereas IPSKP split at the expected median of 0, rather than the actual median.)

rSq[r_, n_] := Table[{Correlation[
x = First[Transpose[data = getData[r, n]]], y = Last[Transpose[data]]]^2,

Correlation[xs = Table[If[x[[i]] < Median[x], 0, 1], {i, 1, Length[x]}], y]^2}, {j,
1, nSims}]

Use the above function to sample nSims squared correlations when the population correlation is 0 and 
the sample size is 50.

rsq = rSq[0, 50];

The proportion of Type I errors for the split analysis:
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sigSplit =
Apply[Plus, Table[If[rsq[[i, 2]] ≥ 0.2786^2, 1, 0], {i, 1, Length[rsq]}]] /∕ nSims /∕/∕ N

0.0517

The proportion of Type I errors for the continuous analysis:

sigCont =
Apply[Plus, Table[If[rsq[[i, 1]] ≥ 0.2786^2, 1, 0], {i, 1, Length[rsq]}]] /∕ nSims /∕/∕ N

0.0494

The proportion of Type I errors when researcher can pick from either analysis.

sigEither =
Apply[Plus, Table[If[rsq[[i, 1]] ≥ (rcrit = 0.2786)^2 || rsq[[i, 2]] ≥ rcrit^2,

1, 0], {i, 1, Length[rsq]}]] /∕ nSims /∕/∕ N

0.0801
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